direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C7×C22.31C24, C14.1122- (1+4), C14.1532+ (1+4), (C2×C28)⋊27D4, C4⋊D4⋊7C14, C4.65(D4×C14), C22⋊Q8⋊6C14, C28.472(C2×D4), C22.3(D4×C14), (C2×C14).357C24, (C2×C28).666C23, C14.192(C22×D4), C2.5(C7×2+ (1+4)), C2.4(C7×2- (1+4)), (D4×C14).216C22, C22.31(C23×C14), (C22×C14).92C23, C23.37(C22×C14), (Q8×C14).271C22, (C22×C28).447C22, (C2×C4)⋊5(C7×D4), (C14×C4⋊C4)⋊45C2, (C2×C4⋊C4)⋊18C14, C2.16(D4×C2×C14), (C2×C4○D4)⋊5C14, (C14×C4○D4)⋊21C2, (C7×C4⋊D4)⋊34C2, C4⋊C4.28(C2×C14), (C2×C14).91(C2×D4), (C7×C22⋊Q8)⋊33C2, (C2×D4).30(C2×C14), C22⋊C4.2(C2×C14), (C2×Q8).58(C2×C14), (C7×C4⋊C4).391C22, (C2×C4).24(C22×C14), (C22×C4).58(C2×C14), (C7×C22⋊C4).84C22, SmallGroup(448,1320)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 466 in 294 conjugacy classes, 162 normal (18 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×8], C22, C22 [×2], C22 [×14], C7, C2×C4 [×14], C2×C4 [×10], D4 [×16], Q8 [×4], C23, C23 [×4], C14 [×3], C14 [×6], C22⋊C4 [×8], C4⋊C4 [×8], C22×C4, C22×C4 [×6], C2×D4 [×10], C2×Q8 [×2], C4○D4 [×8], C28 [×4], C28 [×8], C2×C14, C2×C14 [×2], C2×C14 [×14], C2×C4⋊C4, C4⋊D4 [×8], C22⋊Q8 [×4], C2×C4○D4 [×2], C2×C28 [×14], C2×C28 [×10], C7×D4 [×16], C7×Q8 [×4], C22×C14, C22×C14 [×4], C22.31C24, C7×C22⋊C4 [×8], C7×C4⋊C4 [×8], C22×C28, C22×C28 [×6], D4×C14 [×10], Q8×C14 [×2], C7×C4○D4 [×8], C14×C4⋊C4, C7×C4⋊D4 [×8], C7×C22⋊Q8 [×4], C14×C4○D4 [×2], C7×C22.31C24
Quotients:
C1, C2 [×15], C22 [×35], C7, D4 [×4], C23 [×15], C14 [×15], C2×D4 [×6], C24, C2×C14 [×35], C22×D4, 2+ (1+4), 2- (1+4), C7×D4 [×4], C22×C14 [×15], C22.31C24, D4×C14 [×6], C23×C14, D4×C2×C14, C7×2+ (1+4), C7×2- (1+4), C7×C22.31C24
Generators and relations
G = < a,b,c,d,e,f,g | a7=b2=c2=d2=e2=f2=1, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede=gdg-1=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)(190 191 192 193 194 195 196)(197 198 199 200 201 202 203)(204 205 206 207 208 209 210)(211 212 213 214 215 216 217)(218 219 220 221 222 223 224)
(1 38)(2 39)(3 40)(4 41)(5 42)(6 36)(7 37)(8 27)(9 28)(10 22)(11 23)(12 24)(13 25)(14 26)(15 221)(16 222)(17 223)(18 224)(19 218)(20 219)(21 220)(29 45)(30 46)(31 47)(32 48)(33 49)(34 43)(35 44)(50 74)(51 75)(52 76)(53 77)(54 71)(55 72)(56 73)(57 65)(58 66)(59 67)(60 68)(61 69)(62 70)(63 64)(78 102)(79 103)(80 104)(81 105)(82 99)(83 100)(84 101)(85 93)(86 94)(87 95)(88 96)(89 97)(90 98)(91 92)(106 130)(107 131)(108 132)(109 133)(110 127)(111 128)(112 129)(113 121)(114 122)(115 123)(116 124)(117 125)(118 126)(119 120)(134 158)(135 159)(136 160)(137 161)(138 155)(139 156)(140 157)(141 149)(142 150)(143 151)(144 152)(145 153)(146 154)(147 148)(162 186)(163 187)(164 188)(165 189)(166 183)(167 184)(168 185)(169 177)(170 178)(171 179)(172 180)(173 181)(174 182)(175 176)(190 214)(191 215)(192 216)(193 217)(194 211)(195 212)(196 213)(197 205)(198 206)(199 207)(200 208)(201 209)(202 210)(203 204)
(1 47)(2 48)(3 49)(4 43)(5 44)(6 45)(7 46)(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)(22 223)(23 224)(24 218)(25 219)(26 220)(27 221)(28 222)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(50 59)(51 60)(52 61)(53 62)(54 63)(55 57)(56 58)(64 71)(65 72)(66 73)(67 74)(68 75)(69 76)(70 77)(78 87)(79 88)(80 89)(81 90)(82 91)(83 85)(84 86)(92 99)(93 100)(94 101)(95 102)(96 103)(97 104)(98 105)(106 115)(107 116)(108 117)(109 118)(110 119)(111 113)(112 114)(120 127)(121 128)(122 129)(123 130)(124 131)(125 132)(126 133)(134 143)(135 144)(136 145)(137 146)(138 147)(139 141)(140 142)(148 155)(149 156)(150 157)(151 158)(152 159)(153 160)(154 161)(162 171)(163 172)(164 173)(165 174)(166 175)(167 169)(168 170)(176 183)(177 184)(178 185)(179 186)(180 187)(181 188)(182 189)(190 199)(191 200)(192 201)(193 202)(194 203)(195 197)(196 198)(204 211)(205 212)(206 213)(207 214)(208 215)(209 216)(210 217)
(1 158)(2 159)(3 160)(4 161)(5 155)(6 156)(7 157)(8 126)(9 120)(10 121)(11 122)(12 123)(13 124)(14 125)(15 133)(16 127)(17 128)(18 129)(19 130)(20 131)(21 132)(22 113)(23 114)(24 115)(25 116)(26 117)(27 118)(28 119)(29 141)(30 142)(31 143)(32 144)(33 145)(34 146)(35 147)(36 139)(37 140)(38 134)(39 135)(40 136)(41 137)(42 138)(43 154)(44 148)(45 149)(46 150)(47 151)(48 152)(49 153)(50 162)(51 163)(52 164)(53 165)(54 166)(55 167)(56 168)(57 169)(58 170)(59 171)(60 172)(61 173)(62 174)(63 175)(64 176)(65 177)(66 178)(67 179)(68 180)(69 181)(70 182)(71 183)(72 184)(73 185)(74 186)(75 187)(76 188)(77 189)(78 190)(79 191)(80 192)(81 193)(82 194)(83 195)(84 196)(85 197)(86 198)(87 199)(88 200)(89 201)(90 202)(91 203)(92 204)(93 205)(94 206)(95 207)(96 208)(97 209)(98 210)(99 211)(100 212)(101 213)(102 214)(103 215)(104 216)(105 217)(106 218)(107 219)(108 220)(109 221)(110 222)(111 223)(112 224)
(1 47)(2 48)(3 49)(4 43)(5 44)(6 45)(7 46)(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)(22 223)(23 224)(24 218)(25 219)(26 220)(27 221)(28 222)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(50 59)(51 60)(52 61)(53 62)(54 63)(55 57)(56 58)(64 71)(65 72)(66 73)(67 74)(68 75)(69 76)(70 77)(78 95)(79 96)(80 97)(81 98)(82 92)(83 93)(84 94)(85 100)(86 101)(87 102)(88 103)(89 104)(90 105)(91 99)(106 123)(107 124)(108 125)(109 126)(110 120)(111 121)(112 122)(113 128)(114 129)(115 130)(116 131)(117 132)(118 133)(119 127)(134 151)(135 152)(136 153)(137 154)(138 148)(139 149)(140 150)(141 156)(142 157)(143 158)(144 159)(145 160)(146 161)(147 155)(162 179)(163 180)(164 181)(165 182)(166 176)(167 177)(168 178)(169 184)(170 185)(171 186)(172 187)(173 188)(174 189)(175 183)(190 199)(191 200)(192 201)(193 202)(194 203)(195 197)(196 198)(204 211)(205 212)(206 213)(207 214)(208 215)(209 216)(210 217)
(1 102)(2 103)(3 104)(4 105)(5 99)(6 100)(7 101)(8 189)(9 183)(10 184)(11 185)(12 186)(13 187)(14 188)(15 182)(16 176)(17 177)(18 178)(19 179)(20 180)(21 181)(22 167)(23 168)(24 162)(25 163)(26 164)(27 165)(28 166)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 83)(37 84)(38 78)(39 79)(40 80)(41 81)(42 82)(43 98)(44 92)(45 93)(46 94)(47 95)(48 96)(49 97)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)(57 113)(58 114)(59 115)(60 116)(61 117)(62 118)(63 119)(64 120)(65 121)(66 122)(67 123)(68 124)(69 125)(70 126)(71 127)(72 128)(73 129)(74 130)(75 131)(76 132)(77 133)(134 199)(135 200)(136 201)(137 202)(138 203)(139 197)(140 198)(141 195)(142 196)(143 190)(144 191)(145 192)(146 193)(147 194)(148 211)(149 212)(150 213)(151 214)(152 215)(153 216)(154 217)(155 204)(156 205)(157 206)(158 207)(159 208)(160 209)(161 210)(169 223)(170 224)(171 218)(172 219)(173 220)(174 221)(175 222)
(1 50 38 74)(2 51 39 75)(3 52 40 76)(4 53 41 77)(5 54 42 71)(6 55 36 72)(7 56 37 73)(8 202 27 210)(9 203 28 204)(10 197 22 205)(11 198 23 206)(12 199 24 207)(13 200 25 208)(14 201 26 209)(15 193 221 217)(16 194 222 211)(17 195 223 212)(18 196 224 213)(19 190 218 214)(20 191 219 215)(21 192 220 216)(29 65 45 57)(30 66 46 58)(31 67 47 59)(32 68 48 60)(33 69 49 61)(34 70 43 62)(35 64 44 63)(78 130 102 106)(79 131 103 107)(80 132 104 108)(81 133 105 109)(82 127 99 110)(83 128 100 111)(84 129 101 112)(85 121 93 113)(86 122 94 114)(87 123 95 115)(88 124 96 116)(89 125 97 117)(90 126 98 118)(91 120 92 119)(134 162 158 186)(135 163 159 187)(136 164 160 188)(137 165 161 189)(138 166 155 183)(139 167 156 184)(140 168 157 185)(141 169 149 177)(142 170 150 178)(143 171 151 179)(144 172 152 180)(145 173 153 181)(146 174 154 182)(147 175 148 176)
G:=sub<Sym(224)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,38)(2,39)(3,40)(4,41)(5,42)(6,36)(7,37)(8,27)(9,28)(10,22)(11,23)(12,24)(13,25)(14,26)(15,221)(16,222)(17,223)(18,224)(19,218)(20,219)(21,220)(29,45)(30,46)(31,47)(32,48)(33,49)(34,43)(35,44)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,65)(58,66)(59,67)(60,68)(61,69)(62,70)(63,64)(78,102)(79,103)(80,104)(81,105)(82,99)(83,100)(84,101)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(91,92)(106,130)(107,131)(108,132)(109,133)(110,127)(111,128)(112,129)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,120)(134,158)(135,159)(136,160)(137,161)(138,155)(139,156)(140,157)(141,149)(142,150)(143,151)(144,152)(145,153)(146,154)(147,148)(162,186)(163,187)(164,188)(165,189)(166,183)(167,184)(168,185)(169,177)(170,178)(171,179)(172,180)(173,181)(174,182)(175,176)(190,214)(191,215)(192,216)(193,217)(194,211)(195,212)(196,213)(197,205)(198,206)(199,207)(200,208)(201,209)(202,210)(203,204), (1,47)(2,48)(3,49)(4,43)(5,44)(6,45)(7,46)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(22,223)(23,224)(24,218)(25,219)(26,220)(27,221)(28,222)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(50,59)(51,60)(52,61)(53,62)(54,63)(55,57)(56,58)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(78,87)(79,88)(80,89)(81,90)(82,91)(83,85)(84,86)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105)(106,115)(107,116)(108,117)(109,118)(110,119)(111,113)(112,114)(120,127)(121,128)(122,129)(123,130)(124,131)(125,132)(126,133)(134,143)(135,144)(136,145)(137,146)(138,147)(139,141)(140,142)(148,155)(149,156)(150,157)(151,158)(152,159)(153,160)(154,161)(162,171)(163,172)(164,173)(165,174)(166,175)(167,169)(168,170)(176,183)(177,184)(178,185)(179,186)(180,187)(181,188)(182,189)(190,199)(191,200)(192,201)(193,202)(194,203)(195,197)(196,198)(204,211)(205,212)(206,213)(207,214)(208,215)(209,216)(210,217), (1,158)(2,159)(3,160)(4,161)(5,155)(6,156)(7,157)(8,126)(9,120)(10,121)(11,122)(12,123)(13,124)(14,125)(15,133)(16,127)(17,128)(18,129)(19,130)(20,131)(21,132)(22,113)(23,114)(24,115)(25,116)(26,117)(27,118)(28,119)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,139)(37,140)(38,134)(39,135)(40,136)(41,137)(42,138)(43,154)(44,148)(45,149)(46,150)(47,151)(48,152)(49,153)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,176)(65,177)(66,178)(67,179)(68,180)(69,181)(70,182)(71,183)(72,184)(73,185)(74,186)(75,187)(76,188)(77,189)(78,190)(79,191)(80,192)(81,193)(82,194)(83,195)(84,196)(85,197)(86,198)(87,199)(88,200)(89,201)(90,202)(91,203)(92,204)(93,205)(94,206)(95,207)(96,208)(97,209)(98,210)(99,211)(100,212)(101,213)(102,214)(103,215)(104,216)(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)(112,224), (1,47)(2,48)(3,49)(4,43)(5,44)(6,45)(7,46)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(22,223)(23,224)(24,218)(25,219)(26,220)(27,221)(28,222)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(50,59)(51,60)(52,61)(53,62)(54,63)(55,57)(56,58)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(78,95)(79,96)(80,97)(81,98)(82,92)(83,93)(84,94)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,99)(106,123)(107,124)(108,125)(109,126)(110,120)(111,121)(112,122)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,127)(134,151)(135,152)(136,153)(137,154)(138,148)(139,149)(140,150)(141,156)(142,157)(143,158)(144,159)(145,160)(146,161)(147,155)(162,179)(163,180)(164,181)(165,182)(166,176)(167,177)(168,178)(169,184)(170,185)(171,186)(172,187)(173,188)(174,189)(175,183)(190,199)(191,200)(192,201)(193,202)(194,203)(195,197)(196,198)(204,211)(205,212)(206,213)(207,214)(208,215)(209,216)(210,217), (1,102)(2,103)(3,104)(4,105)(5,99)(6,100)(7,101)(8,189)(9,183)(10,184)(11,185)(12,186)(13,187)(14,188)(15,182)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,167)(23,168)(24,162)(25,163)(26,164)(27,165)(28,166)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,83)(37,84)(38,78)(39,79)(40,80)(41,81)(42,82)(43,98)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(134,199)(135,200)(136,201)(137,202)(138,203)(139,197)(140,198)(141,195)(142,196)(143,190)(144,191)(145,192)(146,193)(147,194)(148,211)(149,212)(150,213)(151,214)(152,215)(153,216)(154,217)(155,204)(156,205)(157,206)(158,207)(159,208)(160,209)(161,210)(169,223)(170,224)(171,218)(172,219)(173,220)(174,221)(175,222), (1,50,38,74)(2,51,39,75)(3,52,40,76)(4,53,41,77)(5,54,42,71)(6,55,36,72)(7,56,37,73)(8,202,27,210)(9,203,28,204)(10,197,22,205)(11,198,23,206)(12,199,24,207)(13,200,25,208)(14,201,26,209)(15,193,221,217)(16,194,222,211)(17,195,223,212)(18,196,224,213)(19,190,218,214)(20,191,219,215)(21,192,220,216)(29,65,45,57)(30,66,46,58)(31,67,47,59)(32,68,48,60)(33,69,49,61)(34,70,43,62)(35,64,44,63)(78,130,102,106)(79,131,103,107)(80,132,104,108)(81,133,105,109)(82,127,99,110)(83,128,100,111)(84,129,101,112)(85,121,93,113)(86,122,94,114)(87,123,95,115)(88,124,96,116)(89,125,97,117)(90,126,98,118)(91,120,92,119)(134,162,158,186)(135,163,159,187)(136,164,160,188)(137,165,161,189)(138,166,155,183)(139,167,156,184)(140,168,157,185)(141,169,149,177)(142,170,150,178)(143,171,151,179)(144,172,152,180)(145,173,153,181)(146,174,154,182)(147,175,148,176)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,38)(2,39)(3,40)(4,41)(5,42)(6,36)(7,37)(8,27)(9,28)(10,22)(11,23)(12,24)(13,25)(14,26)(15,221)(16,222)(17,223)(18,224)(19,218)(20,219)(21,220)(29,45)(30,46)(31,47)(32,48)(33,49)(34,43)(35,44)(50,74)(51,75)(52,76)(53,77)(54,71)(55,72)(56,73)(57,65)(58,66)(59,67)(60,68)(61,69)(62,70)(63,64)(78,102)(79,103)(80,104)(81,105)(82,99)(83,100)(84,101)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98)(91,92)(106,130)(107,131)(108,132)(109,133)(110,127)(111,128)(112,129)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,120)(134,158)(135,159)(136,160)(137,161)(138,155)(139,156)(140,157)(141,149)(142,150)(143,151)(144,152)(145,153)(146,154)(147,148)(162,186)(163,187)(164,188)(165,189)(166,183)(167,184)(168,185)(169,177)(170,178)(171,179)(172,180)(173,181)(174,182)(175,176)(190,214)(191,215)(192,216)(193,217)(194,211)(195,212)(196,213)(197,205)(198,206)(199,207)(200,208)(201,209)(202,210)(203,204), (1,47)(2,48)(3,49)(4,43)(5,44)(6,45)(7,46)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(22,223)(23,224)(24,218)(25,219)(26,220)(27,221)(28,222)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(50,59)(51,60)(52,61)(53,62)(54,63)(55,57)(56,58)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(78,87)(79,88)(80,89)(81,90)(82,91)(83,85)(84,86)(92,99)(93,100)(94,101)(95,102)(96,103)(97,104)(98,105)(106,115)(107,116)(108,117)(109,118)(110,119)(111,113)(112,114)(120,127)(121,128)(122,129)(123,130)(124,131)(125,132)(126,133)(134,143)(135,144)(136,145)(137,146)(138,147)(139,141)(140,142)(148,155)(149,156)(150,157)(151,158)(152,159)(153,160)(154,161)(162,171)(163,172)(164,173)(165,174)(166,175)(167,169)(168,170)(176,183)(177,184)(178,185)(179,186)(180,187)(181,188)(182,189)(190,199)(191,200)(192,201)(193,202)(194,203)(195,197)(196,198)(204,211)(205,212)(206,213)(207,214)(208,215)(209,216)(210,217), (1,158)(2,159)(3,160)(4,161)(5,155)(6,156)(7,157)(8,126)(9,120)(10,121)(11,122)(12,123)(13,124)(14,125)(15,133)(16,127)(17,128)(18,129)(19,130)(20,131)(21,132)(22,113)(23,114)(24,115)(25,116)(26,117)(27,118)(28,119)(29,141)(30,142)(31,143)(32,144)(33,145)(34,146)(35,147)(36,139)(37,140)(38,134)(39,135)(40,136)(41,137)(42,138)(43,154)(44,148)(45,149)(46,150)(47,151)(48,152)(49,153)(50,162)(51,163)(52,164)(53,165)(54,166)(55,167)(56,168)(57,169)(58,170)(59,171)(60,172)(61,173)(62,174)(63,175)(64,176)(65,177)(66,178)(67,179)(68,180)(69,181)(70,182)(71,183)(72,184)(73,185)(74,186)(75,187)(76,188)(77,189)(78,190)(79,191)(80,192)(81,193)(82,194)(83,195)(84,196)(85,197)(86,198)(87,199)(88,200)(89,201)(90,202)(91,203)(92,204)(93,205)(94,206)(95,207)(96,208)(97,209)(98,210)(99,211)(100,212)(101,213)(102,214)(103,215)(104,216)(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)(112,224), (1,47)(2,48)(3,49)(4,43)(5,44)(6,45)(7,46)(8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(22,223)(23,224)(24,218)(25,219)(26,220)(27,221)(28,222)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(50,59)(51,60)(52,61)(53,62)(54,63)(55,57)(56,58)(64,71)(65,72)(66,73)(67,74)(68,75)(69,76)(70,77)(78,95)(79,96)(80,97)(81,98)(82,92)(83,93)(84,94)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,99)(106,123)(107,124)(108,125)(109,126)(110,120)(111,121)(112,122)(113,128)(114,129)(115,130)(116,131)(117,132)(118,133)(119,127)(134,151)(135,152)(136,153)(137,154)(138,148)(139,149)(140,150)(141,156)(142,157)(143,158)(144,159)(145,160)(146,161)(147,155)(162,179)(163,180)(164,181)(165,182)(166,176)(167,177)(168,178)(169,184)(170,185)(171,186)(172,187)(173,188)(174,189)(175,183)(190,199)(191,200)(192,201)(193,202)(194,203)(195,197)(196,198)(204,211)(205,212)(206,213)(207,214)(208,215)(209,216)(210,217), (1,102)(2,103)(3,104)(4,105)(5,99)(6,100)(7,101)(8,189)(9,183)(10,184)(11,185)(12,186)(13,187)(14,188)(15,182)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,167)(23,168)(24,162)(25,163)(26,164)(27,165)(28,166)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,83)(37,84)(38,78)(39,79)(40,80)(41,81)(42,82)(43,98)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(134,199)(135,200)(136,201)(137,202)(138,203)(139,197)(140,198)(141,195)(142,196)(143,190)(144,191)(145,192)(146,193)(147,194)(148,211)(149,212)(150,213)(151,214)(152,215)(153,216)(154,217)(155,204)(156,205)(157,206)(158,207)(159,208)(160,209)(161,210)(169,223)(170,224)(171,218)(172,219)(173,220)(174,221)(175,222), (1,50,38,74)(2,51,39,75)(3,52,40,76)(4,53,41,77)(5,54,42,71)(6,55,36,72)(7,56,37,73)(8,202,27,210)(9,203,28,204)(10,197,22,205)(11,198,23,206)(12,199,24,207)(13,200,25,208)(14,201,26,209)(15,193,221,217)(16,194,222,211)(17,195,223,212)(18,196,224,213)(19,190,218,214)(20,191,219,215)(21,192,220,216)(29,65,45,57)(30,66,46,58)(31,67,47,59)(32,68,48,60)(33,69,49,61)(34,70,43,62)(35,64,44,63)(78,130,102,106)(79,131,103,107)(80,132,104,108)(81,133,105,109)(82,127,99,110)(83,128,100,111)(84,129,101,112)(85,121,93,113)(86,122,94,114)(87,123,95,115)(88,124,96,116)(89,125,97,117)(90,126,98,118)(91,120,92,119)(134,162,158,186)(135,163,159,187)(136,164,160,188)(137,165,161,189)(138,166,155,183)(139,167,156,184)(140,168,157,185)(141,169,149,177)(142,170,150,178)(143,171,151,179)(144,172,152,180)(145,173,153,181)(146,174,154,182)(147,175,148,176) );
G=PermutationGroup([(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189),(190,191,192,193,194,195,196),(197,198,199,200,201,202,203),(204,205,206,207,208,209,210),(211,212,213,214,215,216,217),(218,219,220,221,222,223,224)], [(1,38),(2,39),(3,40),(4,41),(5,42),(6,36),(7,37),(8,27),(9,28),(10,22),(11,23),(12,24),(13,25),(14,26),(15,221),(16,222),(17,223),(18,224),(19,218),(20,219),(21,220),(29,45),(30,46),(31,47),(32,48),(33,49),(34,43),(35,44),(50,74),(51,75),(52,76),(53,77),(54,71),(55,72),(56,73),(57,65),(58,66),(59,67),(60,68),(61,69),(62,70),(63,64),(78,102),(79,103),(80,104),(81,105),(82,99),(83,100),(84,101),(85,93),(86,94),(87,95),(88,96),(89,97),(90,98),(91,92),(106,130),(107,131),(108,132),(109,133),(110,127),(111,128),(112,129),(113,121),(114,122),(115,123),(116,124),(117,125),(118,126),(119,120),(134,158),(135,159),(136,160),(137,161),(138,155),(139,156),(140,157),(141,149),(142,150),(143,151),(144,152),(145,153),(146,154),(147,148),(162,186),(163,187),(164,188),(165,189),(166,183),(167,184),(168,185),(169,177),(170,178),(171,179),(172,180),(173,181),(174,182),(175,176),(190,214),(191,215),(192,216),(193,217),(194,211),(195,212),(196,213),(197,205),(198,206),(199,207),(200,208),(201,209),(202,210),(203,204)], [(1,47),(2,48),(3,49),(4,43),(5,44),(6,45),(7,46),(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21),(22,223),(23,224),(24,218),(25,219),(26,220),(27,221),(28,222),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(50,59),(51,60),(52,61),(53,62),(54,63),(55,57),(56,58),(64,71),(65,72),(66,73),(67,74),(68,75),(69,76),(70,77),(78,87),(79,88),(80,89),(81,90),(82,91),(83,85),(84,86),(92,99),(93,100),(94,101),(95,102),(96,103),(97,104),(98,105),(106,115),(107,116),(108,117),(109,118),(110,119),(111,113),(112,114),(120,127),(121,128),(122,129),(123,130),(124,131),(125,132),(126,133),(134,143),(135,144),(136,145),(137,146),(138,147),(139,141),(140,142),(148,155),(149,156),(150,157),(151,158),(152,159),(153,160),(154,161),(162,171),(163,172),(164,173),(165,174),(166,175),(167,169),(168,170),(176,183),(177,184),(178,185),(179,186),(180,187),(181,188),(182,189),(190,199),(191,200),(192,201),(193,202),(194,203),(195,197),(196,198),(204,211),(205,212),(206,213),(207,214),(208,215),(209,216),(210,217)], [(1,158),(2,159),(3,160),(4,161),(5,155),(6,156),(7,157),(8,126),(9,120),(10,121),(11,122),(12,123),(13,124),(14,125),(15,133),(16,127),(17,128),(18,129),(19,130),(20,131),(21,132),(22,113),(23,114),(24,115),(25,116),(26,117),(27,118),(28,119),(29,141),(30,142),(31,143),(32,144),(33,145),(34,146),(35,147),(36,139),(37,140),(38,134),(39,135),(40,136),(41,137),(42,138),(43,154),(44,148),(45,149),(46,150),(47,151),(48,152),(49,153),(50,162),(51,163),(52,164),(53,165),(54,166),(55,167),(56,168),(57,169),(58,170),(59,171),(60,172),(61,173),(62,174),(63,175),(64,176),(65,177),(66,178),(67,179),(68,180),(69,181),(70,182),(71,183),(72,184),(73,185),(74,186),(75,187),(76,188),(77,189),(78,190),(79,191),(80,192),(81,193),(82,194),(83,195),(84,196),(85,197),(86,198),(87,199),(88,200),(89,201),(90,202),(91,203),(92,204),(93,205),(94,206),(95,207),(96,208),(97,209),(98,210),(99,211),(100,212),(101,213),(102,214),(103,215),(104,216),(105,217),(106,218),(107,219),(108,220),(109,221),(110,222),(111,223),(112,224)], [(1,47),(2,48),(3,49),(4,43),(5,44),(6,45),(7,46),(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21),(22,223),(23,224),(24,218),(25,219),(26,220),(27,221),(28,222),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(50,59),(51,60),(52,61),(53,62),(54,63),(55,57),(56,58),(64,71),(65,72),(66,73),(67,74),(68,75),(69,76),(70,77),(78,95),(79,96),(80,97),(81,98),(82,92),(83,93),(84,94),(85,100),(86,101),(87,102),(88,103),(89,104),(90,105),(91,99),(106,123),(107,124),(108,125),(109,126),(110,120),(111,121),(112,122),(113,128),(114,129),(115,130),(116,131),(117,132),(118,133),(119,127),(134,151),(135,152),(136,153),(137,154),(138,148),(139,149),(140,150),(141,156),(142,157),(143,158),(144,159),(145,160),(146,161),(147,155),(162,179),(163,180),(164,181),(165,182),(166,176),(167,177),(168,178),(169,184),(170,185),(171,186),(172,187),(173,188),(174,189),(175,183),(190,199),(191,200),(192,201),(193,202),(194,203),(195,197),(196,198),(204,211),(205,212),(206,213),(207,214),(208,215),(209,216),(210,217)], [(1,102),(2,103),(3,104),(4,105),(5,99),(6,100),(7,101),(8,189),(9,183),(10,184),(11,185),(12,186),(13,187),(14,188),(15,182),(16,176),(17,177),(18,178),(19,179),(20,180),(21,181),(22,167),(23,168),(24,162),(25,163),(26,164),(27,165),(28,166),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,83),(37,84),(38,78),(39,79),(40,80),(41,81),(42,82),(43,98),(44,92),(45,93),(46,94),(47,95),(48,96),(49,97),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112),(57,113),(58,114),(59,115),(60,116),(61,117),(62,118),(63,119),(64,120),(65,121),(66,122),(67,123),(68,124),(69,125),(70,126),(71,127),(72,128),(73,129),(74,130),(75,131),(76,132),(77,133),(134,199),(135,200),(136,201),(137,202),(138,203),(139,197),(140,198),(141,195),(142,196),(143,190),(144,191),(145,192),(146,193),(147,194),(148,211),(149,212),(150,213),(151,214),(152,215),(153,216),(154,217),(155,204),(156,205),(157,206),(158,207),(159,208),(160,209),(161,210),(169,223),(170,224),(171,218),(172,219),(173,220),(174,221),(175,222)], [(1,50,38,74),(2,51,39,75),(3,52,40,76),(4,53,41,77),(5,54,42,71),(6,55,36,72),(7,56,37,73),(8,202,27,210),(9,203,28,204),(10,197,22,205),(11,198,23,206),(12,199,24,207),(13,200,25,208),(14,201,26,209),(15,193,221,217),(16,194,222,211),(17,195,223,212),(18,196,224,213),(19,190,218,214),(20,191,219,215),(21,192,220,216),(29,65,45,57),(30,66,46,58),(31,67,47,59),(32,68,48,60),(33,69,49,61),(34,70,43,62),(35,64,44,63),(78,130,102,106),(79,131,103,107),(80,132,104,108),(81,133,105,109),(82,127,99,110),(83,128,100,111),(84,129,101,112),(85,121,93,113),(86,122,94,114),(87,123,95,115),(88,124,96,116),(89,125,97,117),(90,126,98,118),(91,120,92,119),(134,162,158,186),(135,163,159,187),(136,164,160,188),(137,165,161,189),(138,166,155,183),(139,167,156,184),(140,168,157,185),(141,169,149,177),(142,170,150,178),(143,171,151,179),(144,172,152,180),(145,173,153,181),(146,174,154,182),(147,175,148,176)])
Matrix representation ►G ⊆ GL6(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 0 | 0 | 0 |
0 | 0 | 0 | 23 | 0 | 0 |
0 | 0 | 0 | 0 | 23 | 0 |
0 | 0 | 0 | 0 | 0 | 23 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
28 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 11 | 15 | 26 |
0 | 0 | 24 | 24 | 18 | 4 |
0 | 0 | 27 | 13 | 0 | 0 |
0 | 0 | 2 | 0 | 5 | 23 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 12 | 12 | 0 | 1 |
1 | 2 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 17 | 17 | 28 | 27 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 28 | 0 | 12 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 17 | 17 | 28 | 27 |
0 | 0 | 12 | 0 | 1 | 1 |
G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,23,0,0,0,0,0,0,23,0,0,0,0,0,0,23,0,0,0,0,0,0,23],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,28,0,0,0,0,0,28,0,0,0,0,0,0,11,24,27,2,0,0,11,24,13,0,0,0,15,18,0,5,0,0,26,4,0,23],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,12,0,0,0,28,0,12,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,2,28,0,0,0,0,0,0,0,17,1,28,0,0,0,17,0,28,0,0,1,28,0,0,0,0,0,27,0,12],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,28,17,12,0,0,1,0,17,0,0,0,0,0,28,1,0,0,0,0,27,1] >;
154 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 7A | ··· | 7F | 14A | ··· | 14R | 14S | ··· | 14AD | 14AE | ··· | 14BB | 28A | ··· | 28X | 28Y | ··· | 28BT |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
154 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C7 | C14 | C14 | C14 | C14 | D4 | C7×D4 | 2+ (1+4) | 2- (1+4) | C7×2+ (1+4) | C7×2- (1+4) |
kernel | C7×C22.31C24 | C14×C4⋊C4 | C7×C4⋊D4 | C7×C22⋊Q8 | C14×C4○D4 | C22.31C24 | C2×C4⋊C4 | C4⋊D4 | C22⋊Q8 | C2×C4○D4 | C2×C28 | C2×C4 | C14 | C14 | C2 | C2 |
# reps | 1 | 1 | 8 | 4 | 2 | 6 | 6 | 48 | 24 | 12 | 4 | 24 | 1 | 1 | 6 | 6 |
In GAP, Magma, Sage, TeX
C_7\times C_2^2._{31}C_2^4
% in TeX
G:=Group("C7xC2^2.31C2^4");
// GroupNames label
G:=SmallGroup(448,1320);
// by ID
G=gap.SmallGroup(448,1320);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-7,-2,-2,1597,4790,1227,3363,416]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^7=b^2=c^2=d^2=e^2=f^2=1,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e=g*d*g^-1=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations